从 1G 到 5G,移动通信发展之路

大部分人谈到历史的时候,关注的是国家的兴衰、王朝的更替,往往忽视了科技的力量

"文津图书奖"得主、计算机专家吴军博士新著《全球科技通史》,从科技视角串联历史,以能量和信息两条主线,分远古科技、古代科技、近代科技和现 代科技四个部分,详细描述了数万年来农业、工业、天文、地理、生物、数学等各个领域关键性的人物、事件及意义,绘制了一幅科技驱动历史的恢宏画卷, 展现了科技叠加式进步的魅力。

本刊特请吴军结合书中第九章《信息时代》,就目前人们普遍关注的5G问题,做一番深入浅出的解析。

-1G 掌握标准,掌握行业制高点

我们先从 1G 说起。

世界上最早的民用移动通信电话是由摩 托罗拉公司发明的。在1968年的消费电子展 (CES)上,最吸引眼球的是它推出的第一代商 用移动电话的原型,当时一部这样的电话售价 2000美元,重达9公斤。几年后,当它开始在市 面上销售时,"体重"降到了不到3公斤,但售

设备要实现通信,还需要让它们都遵守一 套大家都认可的信息编码规范,这就是通信标 准,这和发电报要有标准的电报码是一样的道 理。没有标准,彼此就没法沟通,是鸡同鸭讲。

通信标准中有两部分最重要:一是对信息 的发送和接收的描述,比如打电话时大家用的 电话号码;二是对信息编码的方式,比如文字 就是对信息的一种编码。好的信息编码能保证 尽可能高的信息传输率,接近信道的容量。

在移动通信的发展过程中, 每隔十多年, 就会出现一套新的通信标准。谁掌握了标准, 谁就掌握了行业的制高点。在早期的移动通信 中,标准是以摩托罗拉为主制定的,后来被称

—2G – 手机越做越小

进入上世纪80年代, 诺基亚等公司开始 研制新一代的移动通信设备,并且提出了新的 移动通信标准,它们在1991年开始被投入使 用,我们称之为2G。

1G和2G有什么区别?从技术上讲,1G是 模拟电路,2G 是数字电路;从外观上看,2G 手 机比 1G 手机小很多,更省电,而且可以方便地 收发短信。

为什么 2G 手机可以"瘦身"?因为数字电 路可以把更多的数字芯片集成起来,用一个专 用芯片取代上百个旧芯片。在摩尔定律的影响 下,这种技术进步的叠加效应更为明显,手机

2G 取代 1G 是历史的必然, 诺基亚是 2G 时代的领航者。

是个"半吊子"系统

2G 手机只能打电话、发短信,上网很困难。 3G 的通信标准将信息的传输率提高了一个数 量级,这是一个飞跃,它使得移动互联网得以实 现,从此手机打电话的功能降到了次要的位置, 而数据通信,也就是上网,成为主要功能。

但是,从 1G 到 3G 都存在一个大问题,那 就是上网用的移动通信的网络和原来打电话 用的通信网络虽然能够一定程度地融合,但本 质上还是彼此独立的。

今天的人回头来看这件事可能会觉得荒 唐,但如果我们了解当时移动通信和以AT&T (美国电话电报公司) 为代表的传统电信公司 是多么水火不容,就不难理解这一点了。

水火不相容使得独立的移动网络无法受 益于网络技术的快速进步。2G和3G时代用手 机打一个电话实际上经过的物理路径很长。

3G 的系统是半吊子系统, 虽然标示称网 速很高,但是实际网速并不快。

不过,4G 很快就出现了。

4G 变快是结果,不是原因

4G 有什么革命性的进步呢? 有人说是网 速变快。但这是结果,不是原因。4G 一方面使 用了扁平的网络结构,减少了端到端通信时信 息转发的次数,同时增加了基站之间光纤的带

更重要的是,它同时利用了互联网和电信 网络的技术进步,这两种技术的融合才使得 4G 的速度比 3G 快很多。但还不是完全统一, 这是个重要的事实。

虽然 4G 时代从理论上讲移动通信的网速 可以变得很快,但如果很多人同时上网,它不 仅不够快,甚至都可能连不上去。

2018年,我在杭州参加全国计算机大会, 参会者近万,会场里无论是4G还是Wi-Fi,都 不大管用, 你如果拍张照片想在朋友圈分享, 能否分享成功全凭运气。这一方面是因为总的 网速不够快,另一方面是因为很多人同时和基

站通信,基站成了瓶颈。 通常,一个基站覆盖范围是 1000 米半径 (基站之间的距离一般为2至3公里),正常情 况下,这方圆一公里范围内的人不会都同时上 网, 因此分给每个上网的人的带宽是够用的,

资料图片

书摘

生活在今天的我们是幸运的

我们正身处技术爆炸的时代。2017年全世 界专利申请的数量超过800万件。虽然这里面 有不少水分,但是总数依然相当惊人。如果再看 专利的增长速度,则更为惊人。以世界上最难获 取的美国专利为例,2003-2015年的13年间, 美国专利商标局批准了300万项专利,这个数 量超过了美国专利商标局自 1802 年成立到 2002年底200年间所批准专利的总和。

除了专利申请量惊人,今天科技的另一个 特点是让我们感觉眼花缭乱。虚拟现实、人工 智能、无人驾驶汽车、基因编辑、大数据医疗。 区块链和虚拟货币等,我们在媒体上每天都能 看到这些概念,但是它们意味着什么?为什么 会一夜之间冒出来?对我们的生活将产生什么 影响?今后还会出现什么新的技术名词?

科技进步日新月异,不仅给我们带来了好 的生活, 也让当下的人们产生了很多焦虑和恐 惧。通常,人们的焦虑和恐惧源于对周围的世界 缺乏了解,对未来缺乏把控。要想缓解和消除这 种焦虑和恐惧,需要搞清楚下面三件事情。

首先,科技在大宇宙时空中的地位和作 用,即它在经济和社会生活中的角色,以及它 在历史上对文明进程的推动作用。前者是从空 间维度上看,后者是从时间维度上看。

从空间维度上看,科技在文明进程中的作 用是独特的,是一种进步的力量,这是毋庸置疑 的。工业革命堪称人类历史上最伟大的事件之

一。在工业革命之前,无论是东方还是西方,人 均 GDP 都没有本质的变化。但工业革命发生 后,人均 GDP 就突飞猛进,在欧洲,200 年间增 加了50倍;而在中国,短短40年就增加了10 多倍。因此,古今中外任何王侯将相的功绩和工 业革命相比都不值一提。而工业革命的发生,就 是科学推动技术,再转化为生产力的结果。这是 科技在经济和社会生活中的重要体现。

从时间维度上看,科技几乎是世界上唯独 能够获得叠加性进步的力量,因此,它的发展 是不断加速的。世界文明的成就体现在很多方 面,从政治、法律到文学、艺术、音乐等,都有体 现。虽然总体上讲,文明是不断进步的,但是在 很多方面,过去的成就并不能给未来带来叠加 性的进步。比如在艺术方面,历史上有很多高 峰,后面的未必能超越前面的。今天没有人敢 说自己作曲超越贝多芬或者莫扎特,写诗超越 李白或者莎士比亚,绘画超越米开朗琪罗。但 是,今天任何一个三甲医院的主治医生都敢说 他的医术超过了50年前世界上最好的名医。 因为医学的进步是积累的,现在的医生不仅学 到了50年前名医的医术精髓,而且掌握了过 去名医未知的治疗手段。今天,一个大学生学 会微积分中的牛顿-莱布尼茨公式只需要两 个小时, 但是当初牛顿与莱布尼茨花了10多 年时间才确立了该公式。由于科技具有叠加式 进步的特点,我们对它的未来更加有把握。

其次,世界达到今天这样的文明程度并非 巧合, 而是有着很多的历史必然性。19世纪出 现大量和机械、电力相关的技术,20世纪出现 大量和信息相关的技术,接下来会出现很多和 生物相关的技术, 这些都是有内在逻辑性的。 当我们全面了解了科技在人类文明发展的进 程中是怎样一环扣一环地发展的,我们就能够 把握科技发展的内在逻辑,做到自觉地、有效

最后,我们需要找到一条或者几条主线,从 空间维度了解科技的众多领域及众多分支之间 的相互关系,从而了解科技的全貌,同时从时间 维度理解科技发展的过程和规律。虽然不同的 历史学家、科技史学家和技术专家会给出不同 的主线, 但最本质也最便于使用的两条主线是 能量和信息。这两条主线也是组织本书内容的 线索。而采用能量和信息作为科技发展史的主 线有两个主要原因:其一,我们的世界本身就是 由能量和信息构成的;其二,它们可以量化科技 发展水平,解释清楚各种科技之间的关系

生活在今天的人是非常幸运的, 因为在这 个时代,人类首次知道了宇宙时间的起点、地球 生命的起点,以及人类文明的起点。当然,历史 的很多进程还需要我们不断了解, 接下来就让 我们围绕能源和信息这两根主线,看看人类是 如何开启文明,发展科学技术,并利用它们改变 世界的。(摘自《全球科技通史》前言,有删节)

但当大家都要发照片时,总的传输率超过了信 道的总带宽, 根据香农第二定律, 出错率是 100%,于是大家都发不了。

客观地讲,4G 在绝大部分时候是能够满 足我们目前的上网需求的,但未来会有更多的 智能设备登场,它们要同时上网,就会出现"会 场拥堵'

怎么解决这个问题?有人会想到继续增加 带宽。这是一种自然而然、颇为合理的想法。虽 然在 4G 基础上增加 2 至 3 倍的带宽并非难 事,但如果想增加1至2个数量级就办不到 了。因为这一方面要求大大增加基站的功率, 基站周围就会因为电磁波辐射太强而变得不 安全;另一方面,要想增加带宽,就要增加通信 的频率范围, 但无线通信的频率无法向下扩 展,只能向上扩展,而无线电波的频率越高,它 绕过障碍物的能力就越差,当它高到可见光的 频率时,你随便用张纸就能挡住它,何况城市 里林立的高楼。

怎么办?最简单的办法就是在提高通信频 率的同时,把基站建得非常密,这样就不怕被 建筑物阻拦了。

5G 真正融合成一个网络

基于上述想法,5G的概念就被提出来了。 相对 4G 是在 1000 米范围内建一个基站, 5G 是在百米半径的范围内建基站, 目前的方 案是基站距离平均为两三百米。

手机和基站的距离缩短,会带来三个好处: 建筑物干扰的问题得到解决; 更少的人分享带 宽:由于基站通信范围从 1000 米减少到 100 米, 功率可以降低两个数量级,这样,基站周围电磁 波辐射也会大大降低。

当 5G 的基站密集到两三百米甚至不到 100 米就有一个的时候,我们家里或许就不需要安装 Wi-Fi 了。这样,互联网和通信网络才真正融合成 一个网络,这无疑将是一次通信的革命。

-代都有主导型公司

从 1G 到 2G,实现了从模拟电路到数字电路 的飞跃;

从 2G 到 3G,实现了从语音通信到数据通信 的飞跃;

从 3G 到 4G,实现了移动通信网络和传统电 信网络的融合,将云计算等互联网技术用于移动 通信, 使得不同区域之间的流量能够动态平衡,

大大提高了带宽的使用率;

从 4G 到 5G, 可以实现移动互联网和有线互 联网的彻底融合。这样,万物互联才会成为可能。

5G 的到来会对我们的生活、工作产生哪些 影响?首先,基站距离缩短到两三百米,单位面积 的基站密度就要比 4G 增加百倍,这是一个巨大 的国家级的基础架构建设,从事基础架构建设的 企业都将从中受益。所以,5G 传闻一出,连制造 电线杆的企业股票都疯涨了。

其次,任何致力于将各种网络融合的努力都

是顺势而为,任何试图搭建一个独立的、单纯基 于无线技术的努力都是逆流而动。数月前,有领 导问我:以现在的技术再开发类似于铱星的通信 系统,是否可行?我说完全没有必要,因为那是逆 流而动。从 1G 到 5G,将各种网络融合是一个大

再次,极快的网速可以刺激开发很多需要高

速互联网的应用。 总结半个多世纪以来移动通信的发展历程, 我们只需记住四个要点:单位能量的信息传输率 越来越高;网络不断融合;设备的辐射越来越小; 每一代都会有新的主导型公司出现,1G 是摩托 罗拉,2G是诺基亚,3G、4G是苹果、谷歌和高通, 而 5G 是华为。

《全球科技通史》 吴军 著 中信出版集团

延伸阅读

《5G:开启移动网络新时代》 [葡萄牙]乔纳森·罗德里格斯 编著 江甲沫 等译 电子工业出版社

本书是 5G 早期研究阶段的技术 专著,内容涉及无线物理层/媒体接入 层、移动网络、互联网与云计算、智能 终端等技术领域,同时展现 5G 在性 能提升、能效降低、支撑灵活场景等 方面的特点。

《5G时代:什么是5G,它将如何改 变世界》 项立刚 著

中国人民大学出版社

本书对 5G 的三大场景、六大特 点、核心技术、全球格局等做了清晰 的介绍,回答了"什么是真正的 5G" 的问题。还对 5G 赋能传统产业做了 深入阐释,勾勒了交通、医疗、工业、 农业等因 5G 而将产生的变革。

《 任正非:除了胜利,我们已无路可 走》 周显亮 著

北京联合出版公司

5G 是华为的时代,要了解 5G,很 有必要了解华为和任正非。本书对任 正非管理经营之道进行全方位解析, 全景实录任正非创立华为的每一步 商业制胜转折点,洞悉其商业哲学和 华为企业的精神内核。

《暗趋势:藏在科技浪潮中的商业机 会》 王煜全 著

中信出版集团

改变世界的未来力量不止 5G。本 书聚焦人工智能、混合现实、区块链、 生物医疗等科技行业,分析新科技给 企业和个人带来的发展机遇,前瞻性 地提出了企业和个人在思维与行动 上的应对策略。